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Abstract 

Fundamental problems in ellipsoidal geodesy (e.g. the direct and inverse problems of the 

geodesic; meridian distance; transverse Mercator projection) require, at some stage the 

evaluation of elliptic integrals.  Usual methods – well documented in the geodetic literature 

– involve expanding the integrand into a series followed by term-by-term integration.  This 

paper shows alternative approaches well known to mathematicians but little used by the 

geodetic community.  They are based on a trigonometric transformation first discovered 

(in an algebraic form) by John Landen (1775) and used by A.M. Legendre (1786).  An 

equivalent transformation was independently discovered and extensively used by Gauss 

(1818) in his algorithm of the arithmetic-geometric mean. 

Introduction 

Elliptic integrals arise naturally in expressions for the arc length of an ellipse and one of 

the earliest references to the length of an elliptic arc occurs in Kepler’s Astronomia nova 

(Prague, 1609) announcing his discovery of the elliptical orbit of the Mars and wherein he 

offers some results to aid the calculation of the perimeter of an ellipse.  This, and other 

early work on elliptic arcs is discussed by Dr G.N. Watson in his Presidential Address to 

the British Mathematical Association titled The Marquis and the Land-Agent; A Tale of 

the Eighteenth Century (Watson 1933) and we summarise his interesting address in the 

following paragraphs. 

Watson describes early work by Newton (1642–1727) in 1676 and Maclaurin (1698–1746) 

in 1742 who both gave series for the quadrant length of the ellipse; each obtained from a 

binomial series of the differential arc length (a fluxion) followed by term-by-term 

integration (fluents).  He also gives histories of the life and works of two other 
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mathematicians Guilio Fagnano (1682-1766) and John Landen (1719-1790) – the Marquis 

and the Land-Agent – and their work on methods of calculating the arc lengths of the 

lemniscate, hyperbola and ellipse.  Fagnano, born in Senigallia Italy and created a Marquis 

by the Pope in 1742 is famous for his discovery of a series of algebraic transformations of 

the parameters of the lemniscate that enable its length to be determined by a solution of 

quadratic equations.  This is essentially the transformation of an integral into a form more 

amenable to solution by elementary methods. 

Landen – born near Peterborough England and a land surveyor for twenty years before 

becoming the Earl Fitzwilliam’s land-agent from 1762 to 1788 – used Fagnano’s methods 

in a study of the hyperbola published in the Philosophical Transactions of the Royal 

Society 1775 and developed an algebraic transformation to obtain an expression for the arc 

of an hyperbola as the sum of two auxiliary elliptic arcs.  Landen did not develop his 

transformation for other applications nor did he use it to evaluate elliptic integrals; but the 

French mathematician Adrien-Marie Legendre (1752–1833) defined a function that he 

called the elliptic integral of the First Kind (Legendre 1825, p.79); in our notation as 

 ( )
2 2

0

,
1 sin

d
F k

k

φ
θ

φ
θ

=
−

∫   (1) 

And with ( ),F qψ  gave the connecting equations between the parameters ,  and ,k qφ ψ   

 ( )sin 2 sinkψ φ φ− = ,  
2

1

k
q

k
=

+
 (2) 

and stated the general relationship 

 ( ) ( )2
, ,

1
F k F q

k
φ ψ=

+
 (3) 

Equations (2) are now known as Landen’s ascending transformation and repeated 

applications of (2) and (3) allow iterative schemes for evaluation of such integrals.  We 

explain these schemes in following sections. 

Legendre (1825, pp. 79-89) continued his development with another similar function that 

he called the elliptic integral of the Second Kind; in modern notation 

 ( ) 2 2

0

, 1 sinE k k d

φ

φ θ θ= −∫   (4) 
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And with ( ),E qψ  developed the relationship 

 ( ) ( ) ( ) ( ) ( ), sin 1 , 1 ,E k k k E q k F qφ φ ψ ψ+ = + + −   (5) 

and concluded that this verified Landen’s remarkable result for an arc of an hyperbola in 

terms of two elliptic arcs (Legendre 1825, p. 87). 

Legendre did much work on elliptic functions and the classification of elliptic integrals and 

we adopt his notation in the following sections.  Landen’s transformation was 

independently discovered by Carl Friedrich Gauss (1777-1855) – called by him the 

algorithm of the arithmetico-geometrical mean – and used in connection with the 

evaluation of elliptic integrals arising from mass attractions in planetary theory. 

Elliptic Integrals 

Using the notation 

 ( ) 2 2, 1 sink kθ θ∆ = ∆ = −  (6) 

the three elliptic integrals according to the classification of Legendre are 

First Kind: ( )
2 20 0

,
1 sin

d d
F k

k

φ φθ θ
φ

θ
= =

∆−
∫ ∫  (7) 

Second Kind: ( ) 2 2

0 0
, 1 sinE k k d d

φ φ

φ θ θ θ= − = ∆∫ ∫  (8) 

Third Kind: ( )
( ) ( )

2

2 22 2 2 20 0
, ,

1 sin1 sin 1 sin

d d
k

k

φ φθ θ
φ α

α θα θ θ
Π = =

− ∆− −
∫ ∫  (9) 

where φ  is the amplitude ( )1
2

0 φ π≤ ≤ ; k is the modulus ( )0 1k≤ ≤  and α is a parameter 

( )2α−∞< <∞ . 

The cases where 1
2

φ π=  are the complete elliptic integrals 
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1
2
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=

=
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 (10) 

The case where kα=  of the elliptic integral of the third kind is 

 ( ) ( )
( )

2

3 30 0
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A useful result is 

 
2 2 4

3

sin cos 1 2 sin sind k
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θ θ θ θ

θ

  − +  =   ∆ ∆ 
 (12) 

from which we may write 
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3
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1 2 sin sin 1

1
1

d
k k k k
d

k k k

k

θ θ
θ θ

θ

θ θ

   = − +   ∆ ∆ 
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and hence 
2

2

3

1 sin cosk d
k
d

θ θ

θ

 −  = ∆ −    ∆∆  
  (13) 

Multiplying (11) by ( )21 k−  and using (13) gives 
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and with (6) and (8) this becomes 

 ( ) ( ) ( )
2

2

2 2

sin cos
1 , ,

1 sin

k
k k E k

k

φ φ
φ φ

φ
− Π = −

−
 (14) 

The Arithmetic-Geometric Mean (AGM) 

Elliptic integrals cannot be evaluated in closed form by elementary methods; but they may 

be approximated (to a user defined degree of accuracy) by numerical methods that we will 

explain in the following sections.  At the core of these methods is an iterative scheme that 

yields the arithmetic-geometric mean ( ),M a b  of two real positive sequences { }na  and { }ng  

Assume 0a b≥ >  are real numbers.  Put 
0 0

,a a g b= = ; then define the sequences { }na  

and { }ng  (arithmetic and geometric means respectively) for all integers 1n ≥  as 
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( )
( )

( )

1
1 0 0 1 0 02

1
2 1 1 2 1 12

1
1 1 1 12

,

,

,
n n n n n n

a a g g a g

a a g g a g

a a g g a g− − − −

= + =

= + =

= + =

�

 (15) 

The sequences { }na  and { }ng  converge quadratically to a common limit ( ),M a b  known as 

the arithmetic-geometric mean as shown below. 

The arithmetic-geometric inequality is 2A B AB+ ≥ ; which is a direct consequence of 

( )
2

0A B− ≥  for all real , 0A B ≥  (with equality when A B= ).  Using this, with 

1n
A a

−
=  and 

1n
B g

−
=  we obtain 

 
1 1 1 1

2
n n n n
a g a g

− − − −
+ ≥  (16) 

That is,  
n n
a g≥  for all 1n ≥  

Further ( ) ( )1 1
1 12 2n n n n n n n n n n n n

a a a a g a g a g g g g
+ +

= + ≥ + = ≥ = ≥ =   

So 
0 1 2 1 1 2 1 0n n n n

a a a a a a g g g g g b
+ +

= ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ =� �   

Therefore the sequences { }na  and { }ng  are each bounded, with { }na  non-increasing and 

{ }ng  non-decreasing.  So each sequence is monotonically convergent. 

Further ( )1
1 1 12n n n n n n

a g a g a g− − −− ≤ − = −  

And by induction ( ) ( )1
2

0 as 
n

n n
a g a b n− ≤ − → → ∞   

So sequences { }na  and { }ng  are convergent to the same limit denoted by ( ),M a b  and 

( ),  for all 0
n n
a M a b g n≥ ≥ ≥ . 

To analyse the convergence define 2 2 2

n n n
c a g= −  then 

 

( ) ( )

( )

2

1 1
1 1 1 1 1 1 1 12 2

2 21 1 1
1 1 1 14 4 2

2
1

1 14

n n n n n

n n n n n n n n

n n n n

n n

c a a g g

a g a g a g a g

a g a g

a g

− − − − − − − −

− − − −

− −

= −

= + + −

= + −

= −  

So that 
1 1

2
n n n
c a g

− −
= −   (17) 

which is a measure of the difference between the previous arithmetic and geometric means 

and hence a measure of the convergence of { }n n
a g− . 
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Also ( )( ) ( )( )2

1 1
2 2

n n n n n n n
c a g a g a c+ += + − =  giving 

2

1

1
4

n
n

n

c
c

a+
+

=  and since 
1n

a b
+
≥  we may 

write 
2

1 4
n

n

c
c

b+
≤ .  This shows that { }nc  converges to 0 quadratically. 

Tables 1 and 2 show the iterations for ( )100,1M  and ( )2,1M  using (15) and (17).  The 

terms ,  and 
n n n
a g c  are shown to 30 decimal places. 

     n                          
n
a                                               

n
g                                                 

n
c  

   0 100.000000000000000000000000000000   1.000000000000000000000000000000 
   1  50.500000000000000000000000000000  10.000000000000000000000000000000  49.500000000000000000000000000000 
   2  30.250000000000000000000000000000  22.472205054244231864598140445491  20.250000000000000000000000000000 
   3  26.361102527122115932299070222745  26.072671571798851888825788640849   3.888897472877884067700929777255 
   4  26.216887049460483910562429431797  26.216490391739540869103263272023   0.144215477661632021736640790948 
   5  26.216688720600012389832846351910  26.216688719849834949125252818220   0.000198328860471520729583079887 
   6  26.216688720224923669479049585065  26.216688720224923669476366341013   0.000000000375088720353796766845 
   7  26.216688720224923669477707963039  26.216688720224923669477707963039   0.000000000000000000001341622026 

   M(a,b) = 26.216688720224923669477707963039   1/M(a,b) = 0.038143642420735908710117320873 

Table 1.  Arithmetic-Geometric mean ( )100,1M  

 

     n                          
n
a                                               

n
g                                                 

n
c  

   0   1.414213562373095048801688724210   1.000000000000000000000000000000 
   1   1.207106781186547524400844362105   1.189207115002721066717499970560   0.207106781186547524400844362105 

   2   1.198156948094634295559172166333   1.198123521493120122606585571820   0.008949833091913228841672195772 
   3   1.198140234793877209082878869076   1.198140234677307205798383788190   0.000016713300757086476293297256 
   4   1.198140234735592207440631328633   1.198140234735592207439213655928   0.000000000058285001642247540443 
   5   1.198140234735592207439922492280   1.198140234735592207439922492280   0.000000000000000000000708836353 

   M(a,b) = 1.198140234735592207439922492280   1/M(a,b) = 0.834626841674073186281429732799 

Table 2.  Arithmetic-Geometric mean ( )2,1M  

( )
0.83462684167407318628142

1

1,
973 9

2
279G

M
= =  is known as Gauss’ constant1 and 

the reciprocal of Gauss’ constant is 1.198140234735592207439922492
1

280 M
G

= =  (Finch 

2003, p. 420; Sloane A014549, A053004) 

The following relationships between arithmetic-geometric means may be useful. 

From (15) and deductions above, we can see 

 ( ) ( ), ,
n n

M a b M a g=   (18) 

                                      

1 In honour of C.F. Gauss (1777-1855) who computed ( )2,1M  to 22 digits (by hand) in 1800 in the 

manuscript De origine proprietatibusque generalibus numerorum mediorum arithmetic-geometricorum.  His 

work on the arithmetic-geometric mean was not published in his lifetime (Cox 1984) 
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Also for any constant λ   

 ( ) ( ), ,  so 1, ,1
b a

M a b M a b aM bM
a b

λ λ λ
      = =        

  (19) 

And by applying (18) we may write, with 1a x= +  , 1b x= −   

 ( ) ( )21 ,1 1, 1M x x M x+ − = −   (20) 

And by applying (18) and (19) with 1a =  and b x=   

 ( ) ( )( ) ( )1 1
2 2

2
1, 1 , 1 1,

1

x
M x M x x x M

x

  = + = +   +  
  (21) 

Legendre’s form of the AGM 

A variation of the arithmetic-geometric iteration known as Legendre’s form is given as: 

The modulus k and the complementary modulus k ′  are linked by 

 2 2 1k k ′+ =  (22) 

Defining 
2 2 2

2

2 2
1

a b b
k

a a

−
= = −   (23) 

where a b>  are positive real numbers gives 

 21
b

k k
a

′ = − =   (24) 

and 
1

1

k a b

k a b

′− −
=

′+ +
  (25) 

Put 
0
k b′ =  and define a sequence { }nk ′  as 

 0 1

1 2 1

0 1

2 2 2
, , ,

1 1 1
n

n

n

k k k
k k k

k k k+

′ ′ ′
′ ′ ′= = =

′ ′ ′+ + +
�   (26) 

Then ( ) ( )1
2

0

1, 1
n

n

M b k
∞

=

′= +∏   (27) 

The proof of this relationship is given by Jameson.  Let { }na  and { }ng  be the sequences 

generated by the iteration for ( )1,M b  (with 
0 0

1,a g b= = ) and let n

n

n

g
k

a
′ = .  Then 

0
k b′ =  

and 
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( )

1

1

1

22 2

11

n n nn n nn

n

n n n nn n n

a g aa g kg
k

a a g ka g a

+
+

+

′
′ = = = =

′+ ++
  (28) 

Also ( ) 11 1
2 2
1 1

2
nn n n

n

n n n

ag a g
k

a a a
+

  + ′ + = + = =  
 (29) 

so that  ( ) ( ) ( ) ( ) 1 2 31 1 1 1
0 1 2 12 2 2 2

0 1 2 1

1 1 1 1 n

n n

n

a a a a
k k k k a

a a a a−
−

′ ′ ′ ′+ + + + = =� �  (since 
0

1a = ) 

and hence ( ) ( )
1

1
2

0

1 1,   as 
n

r n

r

k a M b n
−

=

′+ = → →∞∏  (30) 

The quadratic convergence of { }nk ′  to 1 is established by: 

 ( ) ( )
2 2

1

1 2
1 1 2 1 1

1
n n

n n n n n

n

k k
k k k k k

k+

′ ′− +
′ ′ ′ ′ ′− = < − + = − < −

′+
 since 0 1

n
k ′< <   

Table 3 shows the iteration for the evaluation of ( )1, 0.01M  using (26) and (27) 

    n                           
n
a                                              

n
g                                               

n
k ′    

   0   1.000000000000000000000000000000   0.010000000000000000000000000000   0.010000000000000000000000000000 
   1   0.505000000000000000000000000000   0.100000000000000000000000000000   0.198019801980198019801980198020 
   2   0.302500000000000000000000000000   0.224722050542442318645981404455   0.742882811710553119490847618033 
   3   0.263611025271221159322990702227   0.260726715717988518888257886408   0.989058463885320940863777643390 
   4   0.262168870494604839105624294318   0.262164903917395408691032632720   0.999984870144186275377808116438 
   5   0.262166887206000123898328463519   0.262166887198498349491252528182   0.999999999971385499949956133166 
   6   0.262166887202249236694790495851   0.262166887202249236694763663410   0.999999999999999999999897651298 
   7   0.262166887202249236694777079630   0.262166887202249236694777079630   1.000000000000000000000000000000 

   M(a,b) = 0.262166887202249236694777079630             product[(1+kp)/2] = 0.262166887202249236694777079630 

Table 3.  Arithmetic-Geometric mean ( )1, 0.01M  

A more efficient numerical evaluation of ( )1,M b  in (27) can be made by first re-arranging 

the recurrence (26) as 

 ( )1
2

1 1 1

1 n n

n

n n n

k k
k

k k k+ + +

′ ′
′+ = =

′ ′ ′
  (31) 

Then, the right-hand-side of (27) can be approximated by 

 ( ) ( ) ( ) 0 1 2 01 1 1
0 1 22 2 2

1 2 31 1 2 2 3 3

1 1 1
k k k k

k k k
k k kk k k k k k

′ ′ ′ ′
′ ′+ + + = ⋅ ⋅ =

′ ′ ′′ ′ ′ ′ ′ ′
� �

�
  (32) 

giving ( ) 0

1 2 3

1,
k

M b
k k k

′
=

′ ′ ′�
  (33) 
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Another way to present this iteration follows from (22).  If 
2

1

k
t

k

′
′ =

′+
 and 2 2 1t t ′+ =  

then 
( )

( )
( )

2

2 2

2 2

14
1 1

1 1

kk
t t

k k

′−′
′= − = − =

′ ′+ +
 and 

1

1

k
t

k

′−
=

′+
. 

So we have 
1

1

1
n

n

n

k
k

k+

′−
=

′+
 for all 0n≥   (34) 

hence 
1

1 2
1 1

1 1
n

n

n n

k
k

k k+

′−
+ = + =

′ ′+ +
 so that (27) becomes 

 ( )
1

1
1,

1
n n

M b
k

∞

=

=
+∏   (35) 

with 1

1

2

1
n

n

n

k
k

k
−

−

′
′ =

′+
 for all 1n ≥  with starting value 

0
k b′ =  (36) 

Table 4 shows the iteration for the evaluation of 
1

1,
2

M
     

 using (35) 

    n                           
n
a                                              

n
g                                               

n
k    

   0   1.000000000000000000000000000000   0.707106781186547524400844362105 
   1   0.853553390593273762200422181052   0.840896415253714543031125476233   0.171572875253809902396622551581 
   2   0.847224902923494152615773828643   0.847201266746891460403631453693   0.007469666729509581905511156011 
   3   0.847213084835192806509702641168   0.847213084752765366704298051780   0.000013949369424157397777847377 
   4   0.847213084793979086607000346474   0.847213084793979086605997900490   0.000000000048646226837637233590 
   5   0.847213084793979086606499123482   0.847213084793979086606499123482   0.000000000000000000000591613846 

   M(a,b) = 0.847213084793979086606499123482              product[1/(1+k)] = 0.847213084793979086606499123482 

Table 4.  Arithmetic-Geometric mean 
1

1,
2

M
     

 

0.847213
1 1

1, 08479397908660649
2 2

3 82
2

912 4
M

M
G

   = = =   
 is known as the Ubiquitous 

Constant (Finch 2003, p. 421; Sloane A096427). 

Landen’s Transformation 

Landen’s transformation may be developed by considering the geometric relationships 

between two angles θ  and ω  and a parameter k ( )0 1k≤ ≤ .  These relationships are 

shown in Figure 1. 
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2ω ωr

r

A

P

BO Ckr

θ

 

Figure 1 

In Figure 1: 

(i) AB is a diameter of a circle of radius r and centre O, AO OB OP r= = = ; 

(ii) C is a point on OB such that OC = kr with 0 1k≤ ≤ ; 

(iii) ˆPBC ω= ; ˆPCO θ= ; ˆ 2POA ω=  (property of chord AP and circumferential 

angle ω  and central angle 2ω); ˆ 2OPC ω θ= −  and ω θ≤  because 

ˆCPBθ ω ω= + ≥   

Using the sine rule in triangle OPC we obtain 

 ( )sin 2 sinkω θ θ− =  (37) 

We now proceed with a sequence of manipulations to firstly obtain a useful differential 

relationship linking dθ  and dω  [see (38)] and then simplifying this equation into one 

where the functions on the left-hand and the right-hand-sides are similar in form and their 

variables linked by simple relationships [see (49) and (53)]. 

Let 2y ω θ= −  in (37) then, using the chain rule, differentiate with respect to θ ; giving 

cos cosydy k dθ θ= .  With 2dy d dω θ= −  we write  

 ( )( )cos 2 2 cosd d k dω θ ω θ θ θ− − =  

And this can be re-arranged as 

 
( ) ( )

2

cos 2 cos 2 cos

dd

k

ωθ

ω θ ω θ θ
=

− − +
 (38) 

Squaring both sides of (37), then subtracting the result from unity and using 
2 2cos 1 sinA A= −  we may write 

 ( ) 2 2cos 2 1 sinkω θ θ− = −  (39) 
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Expanding (37) with the aid of ( )sin sin cos cos sinA B A B A B− = −  gives 

 sin2 cos cos2 sin sinkω θ ω θ θ− =  (40) 

and dividing both sides of   (40) by cosθ and re-arranging gives 

 
sin2

tan
cos2k

ω
θ

ω
=

+
 (41) 

This relationship is represented by the right-angled triangle in Figure 2, noting that its 

hypotenuse is obtained as 

 ( )22 2 2 2 2sin 2 cos2 sin 2 cos 2 2 cos2 1 2 cos2k k k k kω ω ω ω ω ω+ + = + + + = + +  

 

sin 2ω

k + cos 2ω

θ

√1+2  k cos 2  ω + k2


 

Figure 2 

Using Figure 2 we have 

 
2

sin 2
sin

1 2 cos 2k k

ω
θ

ω
=

+ +
 (42) 

 
2

cos 2
cos

1 2 cos 2

k

k k

ω
θ

ω

+
=

+ +
 (43) 

and multiplying (42) and (43) by sinθ and cosθ respectively and re-arranging gives 

 2 2sin 1 2 cos2 sin 2 sink kθ ω ω θ+ + =  (44) 

 ( )2 2cos 1 2 cos2 cos2 cosk k kθ ω ω θ+ + = +  (45) 

With the aid of ( )cos cos cos sin sinA B A B A B− = +  and (44) and (45) the denominator 

of the right-hand-side of (38) may be written as 

 
( ) ( )

2

cos 2 cos cos2 cos sin2 sin

1 2 cos2

k k

k k

ω θ θ ω θ ω θ

ω

− + = + +

= + +
 (46) 

Note that using 2cos 2 1 2 sinA A= −  we may write 
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( )

( )

( )
( )

2 2 2

2 2

2
2

2
2

2

1 2 cos2 1 2 1 2 sin

1 2 4 sin

1 4 sin

4
1 1 sin

1

k k k k

k k k

k k

k
k

k

ω ω

ω

ω

ω

+ + = + − +

= + + −

= + −
    = + −   +  

 (47) 

So using (46) and (47) we have 

 ( ) ( )
( )

2

2

4
cos 2 cos 1 1 sin

1

k
k k

k
ω θ θ ω− + = + −

+
 (48) 

and substituting (39) and (48) into (38) gives (Rösch 2011, eq. (9)) 

 

( )

2 2
2

2

2

1 41 sin
1 sin

1

d d

k kk

k

θ ω

θ
ω

=
+− −

+

 (49) 

Now, since 0 1k≤ ≤  (see Figure 1 and the explanation) we use the rules for inequalities in 

the following development: 

 ( )
( ) ( )

2

2 2

4 4
1 2, 1 4, 1 ,

1 1

k
k k k

k k
+ ≤ + ≤ ≤ ≤

+ +
 (50) 

Defining 
2

1

k
q

k
=

+
 (51) 

and so 

( )
2 2

2

4

1

k
k k q

k
≤ ≤ =

+
 then, taking positive square roots, 

 k q≤  (52) 

Using (51) and (7) we may write (49) as 

 ( ) ( )2
, ,

1
F k F q

k
φ ψ=

+
 (53) 

where q and k are related by (51) with q k≥  and from (37) (noting Figure 1 with ψ ω≡  

and φ θ≡ ), we have  

 ( )sin 2 sinkψ φ φ− =  (54) 

with ψ φ<  
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So the left-hand-side of (53) has been replaced by a similar function (with a multiplier 2
1 k+
) 

with smaller amplitude ψ  and a larger modulus q. 

We summarise Legendre’s result as 

 

( )

( )

( ) ( )

2 20
If ,  

1 sin

2
and sin 2 sin ,  where ,

1
2

then , ,
1

d
F k

k

k
k q q k

k

F k F q
k

φ θ
φ

θ

ψ φ φ ψ φ

φ ψ

=
−

− = = < ≥
+

=
+

∫

 

These results are now used to develop an iterative scheme to evaluate an elliptic integral of 

the first kind. 

Evaluating Elliptic Integrals of the First Kind 

Defining 
0 1
,k k q k= =  and 

0 1
,φ φ ψ φ= =  we may write (53) as 

 ( ) ( )0 0 1 1

0

2
, ,

1
F k F k

k
φ φ=

+
 (55) 

and the right-hand-side of (55) can be iterated as 

 

( )

( )

2 2

0 1

3 3

0 1 2

2 2
,

1 1

2 2 2
,

1 1 1

F k
k k

F k
k k k

φ

φ

⋅
+ +

= ⋅ ⋅
+ + +

 

giving the sequence (Rösch 2011, eq. (14)) 

 ( ) ( )0 0

0 1 2 1

2 2 2 2
, ,

1 1 1 1 n n

n

F k F k
k k k k

φ φ
−

= ⋅ ⋅
+ + + +

�  (56) 

where the moduli { }nk  and amplitudes { }nφ  are obtained from the recurrence relationships 

 
1 0 1

2
  with starting value  and 

1
n

n n n

n

k
k k k k

k+ +
= ≥

+
 (57) 

 ( )1 0 0 1
sin 2 sin   with starting values ,  and 

n n n n n n
k kφ φ φ φ φ φ+ +− = <  (58) 

Equations (57) and (58) are Landen’s Ascending Transformation (DLMF, §19.8) 

Note that as n →∞ the sequence of moduli { }nk  converges to unity (see the Arithmetic 

Geometric Mean section) and 0 1
n
k≤ ≤ .  Also 1

2
0

n
φ π≤ ≤  and consequently 
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( )1
sin 2 sin sin

n n n n n
kφ φ φ φ+ − = ≤  and 

1
2 2

n n
φ φ

+
≤  so the sequence of amplitudes { }nφ  is 

monotonically decreasing, bounded below by zero, and hence convergent.   

Let ˆlim
nn
φ φ

→∞
=  then with the aid of the standard result ( )1 1

4 2
sec lntandθ θ π θ= +∫  we 

may write 

 ( ) ( ) ( )
ˆ ˆ

1 1
4 220 0

ˆ ˆlim , ,1 sec ln tan
1 sin

n nn

d
F k F d

φ φθ
φ φ θ θ π φ

θ
→∞

= = = = +
−

∫ ∫  (59) 

Using this result in (56) we may write a formula for the evaluation of the elliptic integral 

of the first kind as 

 ( ) ( )1 1
0 0 4 2

0 1 2

2 2 2 ˆ, ln tan
1 1 1

F k
k k k

φ π φ= ⋅ ⋅ +
+ + +

�  (60) 

A more efficient numerical evaluation of ( )0 0
,F kφ  in (60) can made by first re-arranging 

the recurrence (57) as 

 
1 112

1

n nn

n n n

k kk

k k k

+ ++= =
+

 

and in the right-hand-side of (60) we may write 

 1 1 2 2 3 3 1 2 3

0 1 2 1 00 1 2 1

2 2 2 2

1 1 1 1
n n n

n

n n

k k k k k k k k k k k k
k

k k k k kk k k k− −

⋅ ⋅ = ⋅ ⋅ =
+ + + +

�
� �  

And with the approximations ˆ
n

φ φ≈  and 1
n
k ≈  (60) can be approximated as (King 1924, 

eq. (8)) 

 ( ) ( )1 2 3 1 1
0 0 4 2

0

, ln tann
n

k k k k
F k

k
φ π φ≈ +

�
  (61) 

Using (61) with the recurrence relationships (57) and (58) elliptic integrals of the first kind 

can be easily evaluated.  For example, Table 5 shows the sequences { }nk  and { }nφ   for 

0,1,2, , 7n = …  for the evaluation of ( ) ( )1
0 0 3
, , 0.08F k Fφ π=  using Landen’s ascending 

transformation. 
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    n                           
n
k                                            

n
φ  (degrees)                 

   0   0.080000000000000000000000000000  60.000000000000000000000000000000 
   1   0.523782800878924092148773601559  31.986375290275345206426642287209 
   2   0.949910187049589210997543775191  24.047430982645159265462549335921 
   3   0.999670002027321953622743219568  23.410227894528127587073492551888 
   4   0.999999986383174006610440236550  23.406135016316805818730472567793 
   5   0.999999999999999976822755917618  23.406134847458754170823337386119 
   6   1.000000000000000000000000000000  23.406134847458753883409497070244 
   7   1.000000000000000000000000000000  23.406134847458753883409497070244 

 

Table 5.  Landen’s ascending transformation 

Sequences { }nk  and { }nφ  for ( )1
3
, 0.08F π  

 

For 7n=  the numerical values (30 decimal places) for (61) are 

 

( )
( )

7

1 1
74

1 2 3 7

0

2

1
3

2.493447468386180336582176623321

23.406134847458753883409497070244 degrees

ln tan 0.420374825518291193367606198921

1.04818254446186545539848353357,0.08 1

k k k k

k

F

π φ

π

φ =

+ =

=

≈

�

  

A Second Method of Evaluating Elliptic Integrals of the First Kind 

Consider a re-arrangement of (53) as 

 ( ) ( ) ( )1
2

, 1 ,F q k F kψ φ= +  (62) 

where an elliptic integral with a given amplitude ψ  and modulus q on the left-hand-side is 

replaced by an elliptic integral on the right-hand-side with a larger amplitude φ  and 

smaller modulus k. 

The relationships between ,qψ  (known) and ,kφ  (unknown) can be obtained as follows: 

(A) expression for k given q 

From (51) write 

 

( )
( )

( ) ( )
( )
( )

2 2
2

2

2 2 2 2

1 4 14 1 2
1 1

1 1 1 1

k k kk k k
q

k k k k

+ − −− +
− = − = = =

+ + + +
 (63) 

The modulus q and complementary modulus q ′  are linked by 

 
2 2 1q q′+ =  (64) 

and using this relationship and (63) we write 
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2 1

1
1

k
q q

k

−′ = − =
+

 (65) 

Re-arranging (65) and solving for k gives gives 

 

2

2

1 11

1 1 1

qq
k

q q

′ − −−
= =

′+ + −
 (66) 

(B) expression for φ  given ψ  

Using (37) with ,φ θ ψ ω= =  and ( ) ( ) ( )( )sin 2 sin 2 sinω θ θ ω φ ψ ψ− =− − =− − −  we 

write 

 ( ) ( )sin sinkφ ψ ψ φ ψ ψ   − − − = − +        

and using ( )sin sin cos sin cosA B A B B A± = ±  and re-arranging gives 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
sin cos sin cos cos sin cos sin

1 sin cos 1 cos sin

k k

k k

ψ φ ψ ψ φ ψ ψ φ ψ ψ φ ψ

ψ φ ψ ψ φ ψ

− − − = − + −

− − = + −
 

and 

 ( ) 1
tan tan

1

k

k
φ ψ ψ

−
− =

+
 (67) 

Substituting (65) into (67) gives 

 ( ) 2tan 1 tanqφ ψ ψ− = −  (68) 

Defining 
0

ψ φ= , 
1

φ φ= , and 
0

q k= , 
1

k k=  we write (62) as 

 ( ) ( ) ( )1
0 0 1 1 12
, 1 ,F k k F kφ φ= +  (69) 

where 
1 0
k k<  and 

1 0
φ φ>  

The right-hand-side of (69) can be iterated as 

 
( ) ( ) ( )
( ) ( ) ( ) ( )
1 1

1 2 2 22 2

1 1 1
1 2 3 3 32 2 2

1 1 ,

1 1 1 ,

k k F k

k k k F k

φ

φ

+ +

= + + +
 

giving the sequence (Rösch 2011, eq. (22)) 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1
0 0 1 2 32 2 2 2
, 1 1 1 1 ,

n n n
F k k k k k F kφ φ= + + + +�  (70) 

where the moduli { }nk  and amplitudes { }nφ  are obtained from the recurrence relationships 
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2

1 02

1 1
   with starting value 

1 1

n

n

n

k
k k

k
+

− −
=

+ −
 (71) 

 ( ) 2

1 0 0
tan 1 tan    with starting values  and 

n n n n
k kφ φ φ φ+ − = −  (72) 

Equations (71) and (72) are Landen’s Descending Transformation (DLMF, §19.8) 

Now 

( )
2 2 2
1 1 1

22 2
2

1 1
1

1 1 1 1

1 1 1 1 1 1

n n n
n

n n
n

k k k
k

k k k

− − −

− −
−

− − + −
= ⋅ =

+ − + − + −
 and by re-arrangement we may 

write ( )2

1 1
1 1

n n n
k k k

− −
= + −  and using (71) we have 

 

( )

( )

( )

2

1 2

1 12

1
2

2 2

1 1

2

1

2 2

1 1 1

2

1

1 1
1 1

1 1

1 1 1 1

1 1

1 1 1 1

1 1

n

n n n n

n

n n n

n

n n n

n

k
k k k k

k

k k k

k

k k k

k

−
− −

−

− −

−

− − −

−

− −
− = − + −

+ −

− − − + −
=

+ −

− − − + −
=

+ −
  (73) 

The numerator of (73) can be written as 

 ( ) ( ){ }2

1 1 1 1 1 1 1
1 1 1 1 1 1 1 0

n n n n n n n
k k k k k k k

− − − − − − −
− − + − = − − − + + <  

since the term in braces will be less than zero; and using this result in (73) allows us to 

write 
1n n

k k
−

<  for all n.  And 0 1
n
k< <  for all n. 

Thus the sequence { }nk  is monotonically decreasing, bounded below by zero, and hence 

convergent, and lim 0
nn
k

→∞
= .  

Suppose ˆlim
nn
φ φ

→∞
= , then ( ) ( )

ˆ ˆ

0 0

ˆ ˆlim , , 0
1 0

n nn

d
F k F d

φ φθ
φ φ θ φ

→∞
= = = =

−
∫ ∫ , therefore 

Landen’s descending transformation (70) becomes 

 ( ) ( )1
0 0 2

1

ˆ, 1
n

n

F k kφ φ
∞

=

= +∏   (74) 

The sequences { }nk  and { }nφ  are obtained from the recurrence relationships (71) and (72). 
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For the purposes of evaluation we might truncate (74) to 

 ( ) ( )1
0 0 2

1

, 1
n

n r

r

F k kφ φ
=

≈ +∏   (75) 

Table 6 shows the sequences { }nk  and { }nφ  for 0,1,2, , 5n = …  for the evaluation of

( )1
3
, 0.08F π  using Landen’s descending transformation 

 

    n                           
n
k                                            

n
φ  (degrees)                  

   0   0.080000000000000000000000000000    60.000000000000000000000000000000 
   1   0.001605140572193028090147065969   119.920289644141316680103929766278 
   2   0.000000644119893905114137330012   239.840611197798147947606152992362 
   3   0.000000000000103722609431105390   479.681222395591132768280569471756 
   4   0.000000000000000000000000002690   959.362444791182265536561139076104 
   5   0.000000000000000000000000000000  1918.724889582364531073122278152207 
 

Table 6.  Landen’s descending transformation 

Sequences { }nk  and { }nφ  for ( )1
3
, 0.08F π  

 

For 5n =  the numerical values (30 decimal places) for (75) are 

 

( )

( )
5

5

1
2

1

1
3

0.031300180803940431169805270126

1918.724889582364531

1

,0.08

073122278152207 degrees

1.048182544461865455398483533571

r

r

k

F

φ

π

=

+ =

≈

=

∏
  

 

Note that 
1n

φ
+  is almost twice n

φ  as the iterative scheme progresses.  This can be seen 

from the recurrence relationship (72) where ( )2

1
arctan 1 tan

n n n n
kφ φ φ

+
= − + .   

Noting that for large n, 0
n
k ≈ , so 21 1

n
k− ≈ .  Hence 

( ) ( )2

1
arctan 1 tan arctan tan 2

n n n n n n n
kφ φ φ φ φ φ

+
= − + ≈ + = .  In fact 

1
2

n n
φ φ

+
< .  

Also, computer implementations of arctanxθ=  where x−∞ < < ∞  return the principal 

value 1 1
2 2
π θ π− < < .   

For example, in Table 6 
2 1n
φ φ

+
=  is evaluated as 2

1 1
1 tan 1.7376268469x k φ= − =− … 

but arctan x  returns 60.079678446  degθ = − …  whereas we require 

119.920321553φ π θ= + = … to be returned to give 

2
119.920321553 119.92028964 239.84061119779  degφ = + =… … … .  So multiples of π  

must be accumulated as the iteration proceeds.  This can be done with the aid of a ceiling 
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function common to most computer languages where ceiling(x) rounds x upwards to the 

next integer and the appropriate multiples of π  are obtained from: 

 0.5nceiling
φ

π
π

   − ×  
 

A Third Method of Evaluating Elliptic Integrals of the First Kind 

Remembering the definition of 2k  and the relationships between k, k ′  (modulus and 

complimentary modulus) and the positive real numbers a b≥  given by (22) to (25) we 

substitute (23) into (6) to obtain 

 

2
2

2

2
2 2

2

2 2 2 2

1 1 sin

1 sin sin

1
cos sin

b

a

b

a

a b
a

θ

θ θ

θ θ

  ∆ = − −   

= − +

= +  (76) 

Substituting (76) into (7) gives 

 ( )
2 2 2 20 0

,
cos sin

d d
F k a

a b

φ φθ θ
φ

θ θ
= =

∆ +
∫ ∫  (77) 

Defining 

 ( )
2 2 2 20

, ,
cos sin

d
I a b

a b

φ θ
φ

θ θ
=

+
∫  (78) 

we write (77) as 

 ( ) ( ), , ,F k a I a bφ φ=  (79) 

Now, using (62) we write 

 ( ) ( ) ( )1
2

, 1 ,F k u F uφ β= +  (80) 

where , u kβ φ> < . 

Now with the aid of (62) to (68) and (22) to (25) we write 

 
1

1

k a b
u

k a b

′− −
= =

′+ +
 (81) 

 ( )tan tankβ φ φ′− =  (82) 
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Using (24), (81) and some algebra we have ( )1
2

1
1

1

a
u

k a b
+ = =

′+ +
 and substituting 

these results into (80) gives 

 ( ), ,
a a b

F k F
a b a b

φ β
 −  =   + + 

 (83) 

But using (7) 

 

( )
( )

( )
( ) ( )

( )
( )( ) ( ) ( )( )

( )
( )( ) ( )

20

2

2

2 20
2

2 20
2 2 21 1

2 2

1
2 20 2

2 21
2

,

1 sin

sin

2 cos sin sin

cos sin

a b d
F

a b
a b

a b

d
a b

a b a b

d
a b

a b a b

d
a b

a b ab

β

β

β

β

θ
β

θ

θ

θ

θ

θ θ θ

θ

θ θ

 −   =   +  −
−

+

= +
+ − −

= +
+ + − −

= +

+ +

∫

∫

∫

∫  (84) 

Defining ( )1
1 2

  (arithmetic mean of , )a a b a b= +  (85) 

and 
1

  (geometric mean of , )g ab a b=   (86) 

We substitute (84) into (83) and with (78) write 

 ( ) ( )1
1 12

, , ,F k aI a gφ β=  (87) 

Defining 
0 1
,φ φ β φ= = ; 

0
k k= ; 

0 0
a,a g b= =  and equating (79) and (87) gives 

 ( ) ( ) ( )1
0 0 0 0 0 1 1 12
, , , , ,F k I a g I a gφ φ φ= =  (88) 

using the transformation 
2

2 0
0 2

0

1
g

k
a

= − ; the arithmetic and geometric means ( )1
1 0 02
a a g= + , 

1 0 0
g a g=  respectively; and ( )1 0 0 0

tan tankφ φ φ′− =  where 0

0

0

g
k

a
′ =   

The right-hand-side in (88) can be iterated as 

 
( )
( )

1 1
2 2 22 2

1 1 1
3 3 32 2 2

, ,

, ,

I a g

I a g

φ

φ=
 

giving Landen’s Descending Transformation (arithmetic-geometric mean) 
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 ( ) ( ) ( )1
0 0 2
, , ,

n

n n n
F k I a gφ φ=  (89) 

with the arithmetic and geometric means from the recurrence relationships 

 ( )1
1 1 0 02

 and   with starting values ,
n n n n n n
a a g g a g a a g b

+ +
= + = = =  (90) 

and the complimentary moduli, moduli and amplitudes from 

 ( )1 1 0 0 0

1
;  and tan tan   with starting values , ,

1
n n

n n n n n n

n n

g k
k k k a g

a k
φ φ φ φ

+ +

′−
′ ′= = − =

′+
 (91) 

and ( )
2 2 2 20

, ,
cos sin

n

n n n

n n

d
I a g

a g

φ θ
φ

θ θ
=

+
∫  (92) 

The sequence of arithmetic and geometric means defined by (90) converge rapidly to the 

arithmetic-geometric mean: ( ),  as 
n
a M a b n→ → ∞ ; so with 

( )
ˆ

2 2 2 2
0

ˆ
lim , ,

cos sin
n n nn

d
I a g

MM M

φ
θ φ

φ
θ θ

→∞
= =

+
∫  where ( ),M M a b= . 

Since 
n n
a M g≥ ≥ , then a formula for the approximate evaluation of the elliptic integral of 

the first kind is (King 1924, eq. (25)) 

 ( ) ( ) ( )1 1
0 0 2 2
,  or 

n n
n n

n n

F k
a g

φ φ
φ ≈  (93) 

since ˆ
n

φ φ≈   

Table 7 shows numerical values for ( ),F kφ  (30 decimal places) using (93). 

 

    n                         
n
a                                                  

n
g     

   0   1.000000000000000000000000000000   0.996794863550168982310111529389 
   1   0.998397431775084491155055764694   0.998396145600617281504712946656 
   2   0.998396788687850886329884355675   0.998396788687643773689543697523 
   3   0.998396788687747330009714026599   0.998396788687747330009714021229 
   4   0.998396788687747330009714023914   0.998396788687747330009714023914 
   5   0.998396788687747330009714023914   0.998396788687747330009714023914 
 

    n                           
n
k                                            

n
φ  (degrees)                 

   0   0.080000000000000000000000000000    60.000000000000000000000000000000 
   1   0.001605140572193028090147065969   119.920289644141316680103929766278 
   2   0.000000644119893905114137330012   239.840611197798147947606152992362 
   3   0.000000000000103722609431105390   479.681222395591132768280569471756 
   4   0.000000000000000000000000002690   959.362444791182265536561139076104 
   5   0.000000000000000000000000000000  1918.724889582364531073122278152207 

Table 7.  Landen’s descending transformation (arithmetic-geometric mean) 

Sequences { } { } { }, ,
n n n
a b k  and { }nφ  for ( )1

3
, 0.08F π  
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For 5n =  the numerical values (30 decimal places) for (93) are 

 

( )

( )

5
1

5

3

5

2

1

0.031250000000000000000000000000

0.998396788687747330009714023914

1918.724889582364531073122278152207 degrees

1.0481825444,0.08 61865455398483533571

a

F π

φ

=

≈

=

=
  

Table 8 shows numerical values of ( ),F kφ  (15 decimal places) evaluated using Maxima2 

with Landen’s ascending transformation [(61)] and are identical to values from Maple3 

shown in Rösch (2011, Table 8).   

The Maxima code is shown below the table and includes the three different ways that 

( ),F kφ  may be evaluated: Landen’s ascending transformation [(61)]; Landen’s descending 

transformation [(75)]; and Landen’s descending transformation and the arithmetic-

geometric mean [(93)] 

 
 
                  phi = 30 deg       phi = 50 deg       phi = 70 deg       phi = 90 deg 
 F(phi,0.001)  0.523598798244820  0.872664721062379  1.221730701480299  1.570796719494199 
 F(phi,0.100)  0.523825500165390  0.873617925869649  1.223991375207876  1.574745561517356 
 F(phi,0.500)  0.529428627051906  0.898245235942278  1.285300585743293  1.685750354812596 
 F(phi,0.900)  0.543882214161571  0.974638984519665  1.535524776559492  2.280549138422770 
 F(phi,0.999)  0.549247510706947  1.010262233111217  1.732286917108384  4.495596395842144 

Table 8.  ( ),F kφ  evaluated using Landen’s ascending transformation 

Maxima code for production of Table 8 

 

/**********************************************************************/ 

/* elint1_Table.mac 

   Maxima program for calculation of a Table of elliptic integrals  

   of the First Kind using Landen transformations. 

*/ 
 

/* set precision for bigfloat variables*/ 

fpprec:36$ 

 

/* Function 1 to evaluate elliptic integral of First Kind  
   using Landen's ascending transformation 

*/ 

F1(phi,k) := block([product : 1/k, tol : 1.0b-36], 

    while (1-k)>tol do block  

                                      
2 Maxima is a computer algebra system that yields high precision numerical results by using exact fractions, 

arbitrary precision integers, and variable precision floating point numbers. 

http://maxima.sourceforge.net/ 

3 Maple is a commercial computer algebra system developed and sold commercially by Maplesoft.  The 

current major version is version 17 which was released in March 2013.  

http://www.maplesoft.com/products/maple/ 
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       (phi : (asin(k*sin(phi))+phi)/2,   

        k : 2*sqrt(k)/(1+k),  
        product : product*k), 

    return(sqrt(product)*log(tan(pion4+phi/2))))$ 

 

 

/* Function 2 to evaluate elliptic integral of First Kind  

   using Landen's descending transformation 
*/ 

F2(phi,k) := block([product : 1.0b0, kp : sqrt(1-k*k), tol : 1.0b-36], 

    while k > tol do block  

       (theta : atan(kp*tan(phi)), 

        phi : theta+ceiling(phi/%pi-0.5)*%pi+phi,   
        k : (1-kp)/(1+kp), 

        kp : sqrt(1-k*k),  

        product : product*(1+k)/2), 

    return(product*phi))$ 

 

/* Function 3 to evaluate elliptic integral of First Kind  
   using Landen's descending transformation and the arithmetic- 

   geometric mean 

*/ 

F3(phi,k) := block([a : 1.0b0, g : sqrt(1-k*k), product : 1.0b0, tol : 1.0b-36], 

    while (a-g) > tol do block  
       (theta : atan(g/a*tan(phi)), 

        phi : theta+ceiling(phi/%pi-0.5)*%pi+phi,   

        a1 : (a+g)/2, 

        g1 : sqrt(a*g), 

        a : a1, 

        g : g1, 
        product : product*0.5), 

    return(product*phi/a))$ 

 

/* set value of pi/4 */ 

pion4 : bfloat(%pi/4)$ 
 

/* print column headings in a Table for phi = 30 deg, 50 deg, 

   70 deg and 90 deg 

*/ 

printf(true,"~2%           ")$ 

for phi in [30, 50, 70, 90] do printf(true,"       ~a~2d~a","phi = ",phi," deg")$ 
 

/* evaluate F(phi,k) for different moduli k and amplitudes phi 

   and print values in a table 

*/ 

for k in [0.001b0, 0.1b0, 0.5b0, 0.9b0, 0.999b0] do block 
   (printf(true,"~1% ~a~5,3h~a","F(phi,",k,")"), 

    for p : 3 step 2 thru 9 do block 

       (phi : bfloat(p*%pi/18), 

        F : F1(phi,k), 

        printf(true,"~19,15h",F)))$ 

             
printf(true,"~2%")$ 

Evaluating Elliptic Integrals of the Second Kind 

An equation that will be useful in evaluating elliptic integrals of the second kind is (Rösch 

2011, eq. (35)) 

 ( ) ( )2 2

0
, sin 1 sin cosE k k k k d

φ

φ φ θ θ θ+ = − +∫  (94) 

Using (39) and (46) we may express the integrand of (94) as 
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 ( )2 2 21 sin cos cos 2 cos 1 2 cos2k k k k kθ θ ω θ θ ω− + = − + = + +  (95) 

and substituting this result into  (94) gives 

 ( ) 2

0
, sin 1 2 cos2E k k k k d

φ

φ φ ω θ+ = + +∫  (96) 

An expression for dθ  is obtained by re-arranging (38) and using (95) to give 

 
( )

( )
( )

2

2cos 2 2cos 2

cos 2 cos 1 2 cos2

d d
d

k k k

ω θ ω ω θ ω
θ

ω θ θ ω

− −
= =

− + + +
 (97) 

With the aid of ( )cos cos cos sin sinA B A B A B− = +  and (42) and (43) we write the 

numerator of the right-hand-side of (97) as 

 

( ) ( )
( )

( )

2

2 2

2

2cos 2 2 cos2 cos sin2 sin

cos2 cos2 sin 2
2

1 2 cos2 1 2 cos2

2 1 cos2

1 2 cos2

k

k k k k

k

k k

ω θ ω θ ω θ

ω ω ω

ω ω

ω

ω

− = +
 +  = +    + + + + 

+
=

+ +
 (98) 

and substituting this result into (97) gives another expression for dθ  

 
( )

2

2 1 cos2

1 2 cos2

k d
d

k k

ω ω
θ

ω

+
=

+ +
 (99) 

Now substituting (99) into (96) gives (Rösch 2011, eq. (36)) 

 ( ) ( )
20

2 1 cos2
, sin

1 2 cos2

k
E k k d

k k

ψ ω
φ φ ω

ω

+
+ =

+ +
∫  (100) 

Bearing in mind (47) and (51) we may write (100) as 

 ( ) ( )( )
( )20 2 2

2 1 1 cos2
, sin

1 1 sin

k k
E k k d

k q

ψ ω
φ φ ω

ω

+ +
+ =

+ −
∫  (101) 

where ( )sin 2 sinkψ φ φ− =  and 
2

1

k
q

k
=

+
. 

The integrand on the right-hand-side of (101) can be simplified by the following sequence 

of manipulations 

Firstly, multiplying the terms in the numerator then using 2cos 2 1 2 sinA A= −  gives 
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( )( )
( ) ( )

( )
( )

2 2 2 2

2 2
2 2 2 2

2
2 2 2

2
2 2

2 1 1 cos2 2 2 4 sin 2 2 4 sin

1 1 sin 1 1 sin

2 1 4 sin 4 sin

1 1 sin

k k k k k k k

k q k q

k k k

k q

ω ω ω

ω ω

ω ω

ω

+ + + − + + −
=

+ − + −

+ − −
=

+ −
 

Secondly, dividing numerator and denominator of the left-hand-side by ( )21 k+  and using 

(51) gives 

 

( )( )
( )

( ) ( )
2 2

2 2

2 2 22 2

2 2 2 2

2 2

4 4
2 sin sin

2 1 1 cos2 1 1

1 sin1 1 sin

2 sin sin

1 sin

k k
k

k k k k

qk q

q kq

q

ω ω
ω

ωω

ω ω

ω

− −
+ + + +

=
−+ −

− −
=

−
 

Thirdly, simplifying the numerator of the left-hand-side in the following sequence 

 

( )( )
( )

( ) ( ) ( )

( )( ) ( )

2 2 2 2

2 2 22 2

2 2 2 2

2 2

2 2

2 2

2 1 1 cos2 1 sin 1 sin

1 sin1 1 sin

1 sin 1 1 sin

1 sin

1 1 sin 1

1 sin

k k q k k kq

qk q

q k k q

q

k q k

q

ω ω ω

ωω

ω ω

ω

ω

ω

+ + − + − + −
=

−+ −

− + − + −
=

−
+ − + −

=
−

 

Finally we have 

 
( )( )

( )
( ) 2 2

2 2 22 2

2 1 1 cos2 1
1 1 sin

1 sin1 1 sin

k k k
k q

qk q

ω
ω

ωω

+ + −
= + − +

−+ −
 (102) 

Substituting (102) into (101) and using (7) and (8) gives (5) stated again as 

 ( ) ( ) ( ) ( ) ( ), sin 1 , 1 ,E k k k E q k F qφ φ ψ ψ+ = + + −  (103) 

with ψ φ<  and q k> .  The amplitudes ,φ ψ  and moduli ,k q  are linked by the equations: 

 ( )sin 2 sinkψ φ φ− =  (104) 

 
2

1

k
q

k
=

+
 (105) 
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Defining 
0 1
,k k q k= =  and 

0 1
,φ φ ψ φ= =  we may write (103) as 

 ( ) ( ) ( ) ( ) ( )0 0 0 1 1 0 1 1 0 0
, 1 , 1 , sinE k k E k k F k kφ φ φ φ= + + − −  (106) 

And defining 

 ( ) ( )1 1
1 , sin

n n n n n n
C k F k kφ φ+ += − −   (107) 

gives (106) as 

 ( ) ( ) ( )0 0 0 1 1 0
, 1 ,E k k E k Cφ φ= + +   (108) 

and then by advancing the indices we may write 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 2 1

2 2 2 3 3 2

1 1

, 1 ,

, 1 ,

, 1 ,
n n n n n n

E k k E k C

E k k E k C

E k k E k C

φ φ

φ φ

φ φ + +

= + +

= + +

= + +

�

 (109) 

We may use (108) and (109) and write (106) as 

 

( ) ( )( )( )( ) ( )( ) ( )
( )( )( )( ) ( )
( )( )( ) ( )

( )( )( ) ( )( ) ( )

0 0 0 1 2 3 1 1 1

0 1 2 3 1

0 1 2 2 1

0 1 2 3 0 1 2 0 1 0

, 1 1 1 1 1 1 ,

1 1 1 1 1

1 1 1 1

1 1 1 1 1 1

n n n n

n n

n n

E k k k k k k k E k

k k k k k C

k k k k C

k k k C k k C k C C

φ φ
− + +

−

− −

= + + + + + +

+ + + + + +

+ + + + +

+

+ + + + + + + + + +

�

�

�

�

 (110) 

Let ˆlim
nn
φ φ

→∞
=  and noting that lim 1

nn
k

→∞
=  (see Arithmetic Geometric Mean) we write 

 ( ) ( )
ˆ ˆ

2

0 0

ˆ ˆlim , ,1 1 sin cos sin
n nn

E k E d d
φ φ

φ φ θ θ θ θ φ
→∞

= = − = =∫ ∫   (111) 

and ˆlim sin
nn

C φ
→∞

=−  (112) 

Noting that ( ) ( )1 1
ˆlim 1 , 2sin

n n nn
k E kφ φ+ +→∞

+ =  since ( ){ },
n n

E kφ  is bounded and substituting 

(112) into (110) and simplifying gives 

 

( ) ( ) ( )( ) ( )( )( )

( )( )( ) ( )
( )( )( )( ) ( )
( )( )( )( ) ( )

0 0 0 0 1 0 1 2 0 1 2 3

0 1 2 3 2

0 1 2 3 2 1

0 1 2 3 1

, 1 1 1 1 1 1

1 1 1 1

1 1 1 1 1

ˆ1 1 1 1 1 sin

n n

n n

n

E k C k C k k C k k k C

k k k k C

k k k k k C

k k k k k

φ

φ

− −

− −

−

= + + + + + + + + +

+

+ + + + +

+ + + + + +

+ + + + + +

�

�

�

�  (113) 
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where coefficients 
n

C  are given by (107); ( ),F kφ  is an elliptic integral of the first kind and 

the sequences of moduli { }nk  and amplitudes { }nφ  are obtained from the recurrence 

relationships 

 
1 0

2
  with starting value 

1
n

n

n

k
k k

k+
=

+
 (114) 

 ( )1 0 0
sin 2 sin   with starting values ,

n n n n
k kφ φ φ φ+ − =  (115) 

For the purpose of numerical evaluation (113) may be truncated as 

 

( ) ( ) ( )( ) ( )( )( )

( )( )( ) ( )
( )( )( )( ) ( )
( )( )( )( ) ( )

0 0 0 0 1 0 1 2 0 1 2 3

0 1 2 3 2

0 1 2 3 2 1

0 1 2 3 1

, 1 1 1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1 sin

n n

n n

n n

E k C k C k k C k k k C

k k k k C

k k k k k C

k k k k k

φ

φ

− −

− −

−

≈ + + + + + + + + +

+

+ + + + +

+ + + + + +

+ + + + + +

�

�

�

�   (116) 

Noting (26) – (30) we may write here; with 
0 0 0

1,a g k= =  and the arithmetic and 

geometric means defined as ( )1
1 2n n n

a a g+ = +  and 
1n n n

g a g+ =  respectively 

 1

1

1

2

1
nn

n

n n

kg
k

a k
+

+
+

= =
+

  (117) 

 
11 2 n

n

n

a
k

a
++ =   (118) 

and ( )( )( ) ( ) 1 2 3

0 1 2 1

0 1 2 1

1 1 1 1 2 2 2 2 2nn

n n

n

a a a a
k k k k a

a a a a−
−

+ + + + = ⋅ ⋅ =� �  (119) 

Using (119) in (116) gives an alternative expression 

 

( ) 2 3

0 0 0 1 1 2 2 3 3

2 1

2 2 1 1

, 2 2 2

2 2 2 sinn n n

n n n n n n

E k C a C a C a C

a C a C a

φ

φ− −
− − − −

≈ + + + +

+ + +

�

  (120) 

Equation (120) can be simplified further by considering 
0 1 2
, , ,C C C … given by (107) that 

contains ( )1 1
,

n n
F kφ + +

 that can, by using (56), be written as 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1
1 1 0 1 2 0 02 2 2 2
, 1 1 1 1 ,

n n n
F k k k k k F kφ φ+ + = + + + +�   (121) 

Using (119) we may write (121) as 

 ( ) ( )1 1 1 0 0
, ,

n n n
F k a F kφ φ+ + +=   (122) 
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Also, using n

n

n

g
k

a
=  in (107) we may write 

 
11 2   and  sin sinnn n n

n n n n

n n n

ca g g
k k

a a a
φ φ+−

− = = =   (123) 

Now using (122) and (123) in (107) gives 

 ( )1 1

0 0
2 , sinn n n

n n

n n

c a g
C F k

a a
φ φ+ += −   (124) 

where ( )1
1 2n n n

a a g+ = +  and 
1n n n

g a g+ =  are arithmetic and geometric means respectively 

and ( )1
1 2n n n

c a g+ = − , and substituting (124) into (120) gives  

 

( ) ( ){ }
{ }

2 3

0 0 0 0 1 1 2 2 3 3

2 1

0 0 1 1 2 2 1 1

, , 2 2 2 2

sin 2 sin 2 sin 2 sin 2 sin

n

n n

n n

n n n n

E k F k a c a c a c a c

g g g g a

φ φ

φ φ φ φ φ−
− −

≈ + + + +

− + + + + +

�

�   (125) 

Table 9 shows numerical values of ( ),E kφ  (15 decimal places) evaluated using Maxima 

with Landen’s ascending transformation and the arithmetic-geometric mean [(125)] and are 

identical with those shown in Rösch (2011, Table 13) evaluated using Maple.   

The Maxima code is shown below the table and includes the function to evaluate ( ),F kφ  

using Landen’s ascending transformation [(61)]. 

 
                  phi = 30 deg       phi = 50 deg       phi = 70 deg       phi = 90 deg 
 E(phi,0.001)  0.523598752951780  0.872664530931969  1.221730251311829  1.570795934095741 
 E(phi,0.500)  0.517881934859938  0.848316628033472  1.163176859928730  1.467462209339427 
 E(phi,0.999)  0.500049276809973  0.766288871196247  0.940486775266712  1.003994409965508 
 

Table 9.  ( ),E kφ  evaluated using Landen’s ascending transformation 

Maxima code for production of Table 9 

 
/**********************************************************************/ 

/* elint2_Table.mac 

   Maxima program for calculation of a Table elliptic integrals  

   of the Second Kind using Landen transformations. 

*/ 

 
/* set precision for bigfloat variables*/ 

fpprec:36$ 

 

/* Function to evaluate elliptic integral of First Kind  

   using Landen's ascending transformation 
*/ 

F(phi,k) := block([product : 1/k, tol : 1.0b-36], 

    while (1-k)>tol do block  

       (phi : (asin(k*sin(phi))+phi)/2,   

        k : 2*sqrt(k)/(1+k),  

        product : product*k), 
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    return(sqrt(product)*log(tan(pion4+phi/2))))$ 

 
/* Function to evaluate an elliptic integral of the Second Kind  

   using Landen's ascending transformation and the arithmetic- 

   geometric mean 

*/ 

E(phi,k) := block([a : 1.0b0, g : k, n : 0, sum1 : 0.0b0, sum2 : 0.0b0, tol : 1.0b-36], 

    F : F(phi,k), 
    while (a-g) > tol do block  

       (sum2 : sum2 + (2^n)*g*sin(phi), 

        a1 : (a + g)/2, 

        g1 : sqrt(a*g), 

        c1 : (a - g)/2, 
        phi : (asin(k*sin(phi))+phi)/2, 

        sum1 : sum1 + (2^(n+1))*a1*c1, 

        a : a1, 

        g : g1, 

        k : g1/a1, 

        n : n+1), 
    return(F*sum1-sum2+(2^n)*a*sin(phi)))$ 

 

/* set value of pi/4 */ 

pion4 : bfloat(%pi/4)$ 

 
/* print column headings in a Table for phi = 30 deg, 50 deg, 

   70 deg and 90 deg 

*/ 

printf(true,"~2%           ")$ 

for phi in [30, 50, 70, 90] do printf(true,"       ~a~2d~a","phi = ",phi," deg")$ 

 
/* evaluate E(phi,k) for different moduli k and amplitudes phi 

   and print values in a table 

*/ 

for k in [0.001b0, 0.5b0, 0.999b0] do block 

   (printf(true,"~1% ~a~5,3h~a","E(phi,",k,")"), 
    for p : 3 step 2 thru 9 do block 

       (phi : bfloat(p*%pi/18), 

        E : E(phi,k), 

        printf(true,"~19,15h",E)))$ 

             

printf(true,"~2%")$ 

Meridian distance on an ellipsoid - an application of Elliptic Integrals 

In Geodesy, meridian distance M on an ellipsoid of revolution is the distance along a 

meridian from the equator to the point having latitude φ .  An ellipsoid whose semi-axes 

lengths are a and b and a b>  has the following geometric constants: flattening f; 

eccentricity e; 2nd eccentricity e′ ; 3rd flattening n and polar radius of curvature c defined 

as 

 
2 2 2 2 2

2 2
; ; ; ;

a b a b a b a b a
f e e n c

a a b ba b

− − − −′= = = = =
+

 (126) 

and inter-related as follows 

 ( )
2

2 2

2

1
2 ; ; ;

2 11

e f n
e f f e n c a

f ne

 + ′ = − = = =   − −−  
 (127) 
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As an example, the Geodetic Reference System 1980 (GRS80) adopted by the XVII 

General Assembly of the International Union of Geodesy and Geophysics (IUGG) in 

Canberra, December 1979 has a reference ellipsoid with the following geometric 

parameters: 

 semi-major axis 6378137 metresa =  and flattening 1 298.257222101f =  

Computed constants for the GRS80 ellipsoid are: 

 

( )

( ) ( )
( )

2 2

2

1 6356752.314 metres 6399593.626 metres
1
2

2 6.694 380023e-003 6.739496775e-003
1

1.679220395e-003
2

a
b a f c

f
f f

e f f e
f

f
n

f

= − = = =
−

−
′= − = = =

−

= =
−

 

Meridian arc length is defined by the differential relationship 

 dM dρ φ=  (128) 

where ρ  is the radius of curvature in the meridian plane and given by 

 
( )

( )
( )2 2

3 2 3
2 2

1 1

1 sin

a e a e

We
ρ

φ

− −
= =

−
 (129) 

Alternatively, the radius of curvature in the meridian plane is also given by 

 

( )

2

3 2 3
2 21 cos

a c

Vb e
ρ

φ

= =
′+

 (130) 

where the latitude functions V and W are defined as 

 
( )

2
2 2 2 2 2 2

2

1 2 cos2
1 sin ; 1 cos

1

n n
W e V e

n

φ
φ φ

+ +′= − = + =
−

 (131) 

Substituting (129) into (128) leads to series formula for the meridian distance M as a 

function of latitude φ  and powers of 2e .  Substituting (130) into (128) leads to series 

formula for M as a function of φ  and powers of n.   

Series formula involving powers of 2e  are more commonly found in the geodetic literature 

but, series formula involving powers of n are more compact requiring fewer terms for the 
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same numerical accuracy since 21
4

n e≈ .  Following Helmert’s4 method of development 

(Deakin & Hunter 2013) and with some algebra we may write 

 ( ) ( )2 3 2
2 2

3

0 0

1 1 2 cos2
1

c a
M d n n n d

nV

φ φ

θ θ θ
−

= = − + +
+∫ ∫   (132) 

The integrand in (132) is expanded by use of Taylor series followed by term-by-term 

integration and simplification.  This process yields the usual ‘series form’ expression for 

meridian distances.  Maxima can be used to evaluate the integral and M can be written as 

 

0 2 4

6 8

10 12

14 16

sin2 sin 4

sin 6 sin 8

sin10 sin121

sin14 sin16

c c c

c ca
M

c cn

c c

φ φ φ

φ φ

φ φ

φ φ

  + +   + +  =   + ++    + + +   �

  (133) 

where the coefficients { }
n

c  are to order 8
n  as follows 

2 4 6 8 3 5 7

0 2

2 4 6 8 3 5 7

4 6

4 6 8 5 7

8 10

12

1 1 1 25 3 3 3 15
1

4 64 256 16384 2 16 128 2048
15 15 75 105 35 175 245

16 64 2048 8192 48 768 6144
315 441 1323 693 2079

512 2048 32768 1280 10240
1

c n n n n c n n n n

c n n n n c n n n

c n n n c n n

c

= + + + + = − + + + +

= − − − − = − + + +

= − − − = − + +

=

� �

� �

� �

6 8 7

14

8

16

001 1573 6435

2048 8192 14336
109395

262144

n n c n

c n

− − = − +

= −

� �

�

  (134) 

For the GRS80 ellipsoid, the meridian distance M for 60φ= �
 evaluated using (133) is 

 6654072.81936745metresM =   

An alternative to this usual method of development can be developed by substituting (129) 

into (128) and writing 

                                      
4 German geodesist F.R. Helmert who wrote Die mathematischen und physikalischen Theorieen der höheren 

Geodäsie (Part I was published in 1880 and Part II in 1884) that laid the foundations of modern geodesy.  

(Part I is devoted to the mathematical aspects of geodesy.)  In 1876 he discovered the chi-squared 

distribution as the distribution of the sample variance for a normal distribution.  This discovery and other of 

his work was described in German textbooks, including his own, but was unknown in English, and hence 

later rediscovered by English statisticians – the chi-squared distribution by Karl Pearson (1900), and the 

application to the sample variance by 'Student' and Fisher. 
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( ) ( )

( )

2

2

3 3
2 20 0

1
1

1 sin

a e d
M d a e

W
e

φ φ
θ

θ

θ

−
= = −

−
∫ ∫   (135) 

With e k≡  and using (6) and (11) we may write (135) as 

 ( ) ( ) ( ) ( )2 2 2

3

0

1 1 1 ,
d

M a e a e a e e

φ
θ

φ= − = − = − ∏
∆∫   (136) 

And using (14) we write 

 ( )
2

2 2

sin cos
,

1 sin

e
M a E e

e

φ φ
φ

φ

    = −  −   
  (137) 

where ( ),E eφ  is the elliptic integral of the Second Kind that may be evaluated using 

(125). 

For the GRS80 ellipsoid, the meridian distance M for 60φ= �
 evaluated (to 30 decimal 

places) using Maxima and (137) and (125) is 

 6654072.819367444406819108934413675127metresM =   

The Maxima program mdist_elint2.mac is shown below followed by the program output in 

Table 10. 

 

/**********************************************************************/ 

/* mdist_elint2.mac 
   Maxima program for calculation of meridian distance using an  

   elliptic integral of the Second Kind using Landen transformations. 

*/ 

 

/* set precision for bigfloat variables*/ 
fpprec:48$ 

 

/* Function to evaluate elliptic integral of First Kind  

   using Landen's ascending transformation 

*/ 

F(phi,k) := block([product : 1/k, tol : 1.0b-36], 
    while (1-k)>tol do block  

       (phi : (asin(k*sin(phi))+phi)/2,   

        k : 2*sqrt(k)/(1+k),  

        product : product*k), 

    return(sqrt(product)*log(tan(pion4+phi/2))))$ 
 

/* Function to evaluate an elliptic integral of the Second Kind  

   using Landen's ascending transformation and the arithmetic- 

   geometric mean 

*/ 

E(phi,k) := block([a : 1.0b0, g : k, n : 0, sum1 : 0.0b0, sum2 : 0.0b0, tol : 1.0b-40], 
    F : F(phi,k), 

    while (a-g) > tol do block  

       (sum2 : sum2 + (2^n)*g*sin(phi), 

        a1 : (a + g)/2, 

        g1 : sqrt(a*g), 
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        c1 : (a - g)/2, 

        phi : (asin(k*sin(phi))+phi)/2, 
        sum1 : sum1 + (2^(n+1))*a1*c1, 

        a : a1, 

        g : g1, 

        k : g1/a1, 

        n : n+1), 

    return(F*sum1-sum2+(2^n)*a*sin(phi)))$ 
 

/* set degree to radian conversion */ 

d2r : bfloat(180/%pi)$ 

 

/* set value of pi/4 */ 
pion4 : bfloat(%pi/4)$ 

 

/* set GRS80 ellipsoid parameters a and f */ 

a : 6378137.0b0$ 

flat : 298.257222101b0$ 

f : 1/flat$ 
 

/* computed ellipsoid constants */ 

k2 : f*(2-f)$ 

k : sqrt(k2)$ 

 
/* set latitude */ 

phi : bfloat(%pi/3)$ 

/* phi : bfloat(%pi/2)$ */ 

 

/* compute meridian distance */ 

E : E(phi,k)$ 
mdist : a*(E-k2*sin(phi)*cos(phi)/sqrt(1-k2*sin(phi)^2))$ 

 

/* print results */ 

printf(true,"~1% ~a~38,30h~a","       a = ",a," metres")$ 

printf(true,"~1% ~a~38,30h","    flat = ",flat)$ 
printf(true,"~1% ~a~38,30h","       f = ",f)$ 

printf(true,"~1% ~a~38,30h~a","     phi = ",phi*d2r,"(degrees)")$ 

printf(true,"~1% ~a~38,30h","       e = ",k)$ 

printf(true,"~1% ~a~38,30h","E(phi,e) = ",E)$ 

printf(true,"~1% ~a~38,30h~a","   mdist = ",mdist," metres")$ 

 
printf(true,"~2%")$ 

 

Output from program mdist_elint2.mac 
 

        a = 6378137.000000000000000000000000000000 metres 

     flat =     298.257222101000000000000000000000 

        f =       0.003352810681182318935434146126 

      phi =      60.000000000000000000000000000000(degrees) 
        e =       0.081819191042815790145895739896 

 E(phi,e) =       1.046168817527900319688127443142 

    mdist = 6654072.819367444406819108934413675127 metres 

Table 10.  Meridian distance evaluated using the elliptic integral ( ),E eφ  and (137)  

As a way of confirming the method of computation, program mdist_elint2.mac was 

modified to produce a table of meridian distances M for latitudes 30°, 45°, 60° and 90° on 

Bessel’s ellipsoid ( 6377397.155ma = , 0.08169683121517e = ) giving 
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     a =  6377397.155000000000000 metres 

  flat =      299.152812853972934 

     f =        0.003342773181572 

     e =        0.081696831215170 
 

                phi = 30 deg            phi = 45 deg            phi = 60 deg            phi = 90 deg        
 mdist =     3319786.509543301836   10000855.764435535539    6653376.120611621107   10000855.764435535539 

 

These results agree with those given in Dorrer (1999, p. 97). 

An alternative formula for computing meridian distance using elliptic integrals can be 

derived from the differential arc length of the meridian ellipse whose Cartesian equation is 

 
2 2

2 2
1

w z

a b
+ =   (138) 

where the w-axis lies in the equatorial plane of the ellipsoid and the z-axis is coincident 

with the axis of revolution of the ellipsoid; and a point on the meridian ellipse has 

coordinates 

 
cos

sin

w a

z b

ψ

ψ

=

=
  (139) 

where ψ  is the parametric (or reduced) latitude and 

 ( )2tan tan 1 tan 1 tan
b

e f
a

ψ φ φ φ= = − = −   (140) 

The differential arc length ds satisfies the relationship 2 2 2ds dw dz= +  where 

sindw a dψ ψ=− , cosdz b dψ ψ=  and 

 

( )
( )( )

( )( )
( )

2 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2

sin cos

1 cos cos

cos

1 cos

ds a b d

a b d

a a b d

a e d

ψ ψ ψ

ψ ψ ψ

ψ ψ

ψ ψ

= +

= − +

= − −

= −   (141) 

And the meridian distance from the equator to parametric latitude ψ  is 

 2 2

0

1 cosM a e d
ψ

θ θ= −∫   (142) 

This equation is not in a suitable form, but using 90β ψ= −�  with 
2 2cos sinψ β=  in 

(141) gives an equation for the distance from the pole as 
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 ( )2 2

0

1 sin ,
POLE

M a e d a E e
β

θ θ β= − =∫   (143) 

This equation was given by Legendre (1811, p. 179). 

Defining Q as the quadrant distance (meridian distance from equator to pole) and noting 

(10) and (143) we write 

 ( ) ( ){ }1
POLE 2

, ,M Q M a E e E eπ β= − = −   (144) 

where 
( )

1
tan

1 tanf
β

φ
=

−
  

Maxima program mdist_elint2.mac was modified to give the following results for M for 

60φ= �
 evaluated (to 30 decimal places) using (144) and (125) 

 
POLE

3347892.909863019284699224985055609762 metres

10001965.729230463691518333919469284889 metres

6654072.819367444406819108934413675127metres

M

M

Q

=
=
=

  

Output from modified program mdist_elint2.mac is shown in Table 11. 
 

         a =  6378137.000000000000000000000000000000 metres 
      flat =      298.257222101000000000000000000000 
         f =        0.003352810681182318935434146126 
       phi =       60.000000000000000000000000000000(degrees) 
       psi =       59.916607796611328125061711133111(degrees) 
      beta =       30.083392203388671874938288866889(degrees) 
         e =        0.081819191042815790145895739896 
 E(beta,e) =        0.524901379487931865480347158591 
    M_pole =  3347892.909863019284699224985055609762 metres 
         Q = 10001965.729230463691518333919469284889 metres 
     mdist =  6654072.819367444406819108934413675127 metres 

Table 11.  Meridian distance evaluated using the elliptic integral ( ),E eβ  and (144) 

Geodesic Arc Length – another application of Meridian Distance and Elliptic Integrals 

In geodesy, the geodesic is a unique curve on the surface of an ellipsoid defining the 

shortest distance between two points.  It has a characteristic equation 

 cos sin cos sina Cν φ α ψ α= =   (145) 

where c Vν =  is the radius of curvature in the prime vertical plane, φ  is latitude, α  is 

azimuth, a is the semi-major axis of the ellipsoid, ψ  is parametric latitude and C is a 
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constant.  Equation (145) is known as Clairaut’s equation5.  A geodesic oscillates over the 

surface of the ellipsoid between two parallels of latitude having a maximum in the 

northern and southern hemispheres and crossing the equator at nodes; but due to the 

eccentricity of the ellipsoid the geodesic will not repeat after a complete cycle.  sinα  is a 

maximum of 1 when 90 and 270α = � �  and this point is known as the geodesic vertex 

having latitudes 
0 0
 and φ ψ  and 

 
0 0

cos cos sin   and  cos cos sina a Cψ ψ α ψ ψ α= = =   (146) 

The geodesic crosses the equator ( )0φ ψ= = �  at a node and its azimuth at this point is 

denoted as 
E
α  and using (146) we obtain 

 2 2

0 0
cos sin   and  sin cos

E E
ψ α ψ α= =   (147) 

Equations relating to geodesics on the ellipsoid are often developed with the aid of an 

auxiliary sphere where points on the ellipsoid having geodetic coordinates ,φ λ  (latitude 

and longitude respectively) correspond to points on the auxiliary sphere having coordinates 

,ψ ω  (spherical latitude and spherical longitude respectively), noting that parametric 

latitude ( )( )arctan 1 tanfψ φ= −  on the ellipsoid is identical to spherical latitude ψ  on 

the auxiliary sphere.  The geodesic on the ellipsoid is mapped to the auxiliary sphere as a 

great circle and the azimuth α  of a geodesic at P on the ellipsoid is identical to the 

azimuth A of the great circle passing through the corresponding point P ′  on the auxiliary 

sphere since both have identical values of ψ .  This is a consequence of Clairaut’s equation 

(145).  A geodesic arc of length s on the ellipsoid corresponds to a great circle arc of length 

σ  on the auxiliary sphere and relationships between geodetic quantities ( ), , , ,sφ ψ λ α  and 

spherical quantities ( ), , ,Aψ ω α σ=  can be established using both spherical trigonometry 

and ratios of differential quantities on both surfaces.  Legendre (1811, § 127, pp. 179-180) 

used these relationships and gave (in our notation) two differential equations 

                                      
5 Named in honour of the French mathematical physicist Alexis-Claude Clairaut (1713-1765) who published 

this result in 1733 in a paper titled Détermination geometric de la perpendicular à la méridienne, that was a 

study of geodesics on quadrics of revolution. 
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2 2 2 2 2

0

2 2 2 2 2

00

2 2

0

sin cos

sin coscos

1 sin cos

ds b a e d

b a e
d d

a

ψ σ σ

ψ σψ
ω σ

ψ σ

= +

+
=

−

  (148) 

where σ  is a spherical arc length measured from the vertex on the auxiliary sphere. 

We are interested here in geodesic arc length s, and taking the first member of (148) we 

write 

 

( )
( )( )

( )

2 2 2 2 2 2 2

0

2 2 2 2 2 2

0

2 2 2 2 2 2 2 2 2

0 0

2 2 2
2 2 2 2 2 20

0 2 2 2 2

0

sin cos

sin 1 sin

sin sin sin

sin
sin 1 sin

sin

ds b a e d

b a e d

b a e a e d

a e
b a e d

b a e

ψ σ σ

ψ σ σ

ψ ψ σ σ

ψ
ψ σ σ

ψ

= +

= + −

= + −
  = + −   + 

  (149) 

Let 
2 2 2 2

2 0

2 2 2 2 2 2 2 2

0 0

sin
1

sin sin

a e b

b a e b a e

ψ
ε

ψ ψ
= = −

+ +
  (150) 

then ( )2 2

2
1 sin

1

b
ds dε σ σ

ε
= −

−
  (151) 

Here, ε  is the eccentricity of a ‘new’ ellipsoid whose semi-minor axis is b and semi-major 

axis is 

 2 2 2 2

0 2
sin

1

b
a b a e ψ

ε

∗ = + =
−

  (152) 

and ( )2 2

0

1 sin ,s a d a E
σ

ε σ σ σ ε∗ ∗′ ′= − =∫   (153) 

Comparing (153) with (143) we see that the geodesic arc s measured from the vertex is 

equivalent to the meridian distance from the pole of an ellipsoid ,a b∗  ( )a b∗ >  to a point 

having parametric latitude 90ψ σ= −�  or 90σ β ψ= = −� . 

We may confirm this by first computing a reference geodesic arc on an ellipsoid and then 

comparing this with results from (153).  Our reference geodesic arc is computed using ‘on-

line’ software available at Geographiclib – direct and inverse geodesic calculations 

(http://geographiclib.sourceforge.net/cgi-bin/GeodSolve) written by C.F.F. Karney.  This 

software is capable of nanometre accuracy for any geodesic on the surface of the ellipsoid 

and the algorithms are described in Algorithms for Geodesics (Karney 2013). 
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Reference geodesic arc 

 GRS80 ellipsoid ( )6378137 metres, 1 298.257222101a f= =   

 azimuth at equator (node): 1
6

30
E
α π= = �   

geodesic arc, equator to vertex: 
0

9997769.059919197 metress =  

arc length on auxiliary sphere, equator to vertex: 
0

90.00000000000000 degreesσ =   

parametric latitude of vertex: ( ) 1
0 3

arccos sin 60
E

ψ α π= = = �  

latitude of vertex: 0
0

tan
arctan 60.08325228717234 degrees

1 f

ψ
φ

  = =  − 
. 

longitude difference between node and vertex: 89.84921850746352 degreesλ∆ =   

geodesic arc, equator to P: 
1

4994873.220573560 metress =  

arc length on auxiliary sphere, equator to P: 
1

45.00000000000000 degreesσ =   

latitude P: 37.85444005133714 degrees
P
φ =   

longitude difference between node and P: 26.48963021420673 degrees
P
λ∆ =   

The Maxima function mdist_elint2.mac was modified to produce the output in Table 12 

for a point P on a geodesic on the GRS80 ellipsoid.  The geodesic crosses the equator at an 

azimuth 1
6

30
E
α π= = �  and P is located on this geodesic such that its arc length on the 

auxiliary sphere from the vertex is 1
4

45σ π= = � .  The modified function uses (153) with 

the new ellipsoid ,a b∗  with eccentricity ε  from (150) and (152) 
 

 

              a =  6378137.000000000000000000000000000000 metres 

           flat =      298.257222101000000000000000000000 
              f =        0.003352810681182318935434146126 

              e =        0.081819191042815790145895739896 

             e' =        0.082094438151917199403251490213 

              b =  6356752.314140355847852106861529533079 

              Q = 10001965.729230463691518333919469284889 metres 
        alpha_E =       30.000000000000000000000000000000(degrees) 

          psi_0 =       60.000000000000000000000000000000(degrees) 

          phi_0 =       60.083252287172337202234022676318(degrees) 

 

          a_new =  6372797.555933260801146114967789232643 metres 

       flat_new =      397.176785378905828888485190217561 
          f_new =        0.002517770516335696900202345472 

          e_new =        0.070916865866297732761886275874 

      b_new = b =  6356752.314140355847852106861529533079 

          sigma =       45.000000000000000000000000000000(degrees) 

 E(sigma,e_new) =        0.785039191255619666532078660357 
        mdist_P =  5002895.839345636695447863997672795087 metres 

          Q_new =  9997769.059919197098224444256759521859 metres 

        mdist_E =  4994873.220573560402776580259086726772 metres 

Table 12.  Meridian distances on ‘new’ ellipsoid equal to Geodesic arcs evaluated using 

elliptic integral ( ),E eσ  and (153) 
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From Table 12, meridian distances Q_new, mdist_P and mdist_E on the new ellipsoid are equal 

to 
0
s , 

1
s , and 

0 1
s s−  respectively on the reference geodesic at nanometre level.  This would 

appear to confirm the method of evaluation using the elliptic integral of the second kind 

( ),E eσ .  [Interestingly, the semi-major axis a∗  (a_new) for the new ellipsoid is identical to 

the reduced length6 m  for the geodesic arc from equator to vertex.  Karney (2013) makes 

use of the reduced length in the solution of the geodesic inverse problem.] 

Conclusions 

This paper presents methods of evaluation for elliptic integrals of the first and second kind.  

These methods employ Landen’s transformation in three forms; ascending, descending and 

descending with arithmetic-geometric mean.  In explaining these methods we have 

provided a detailed treatment of the arithmetic-geometric mean iteration that lies at the 

heart of elliptic integral evaluations as well as a trigonometric development of Landen’s 

transformations.  We have also provided numerical examples of the iterative schemes and 

hopefully demonstrated their rapid convergence to acceptable results.  Indeed, the accuracy 

and speed of these methods is limited only by the computer ‘architecture’.  And they are 

very simple to program.  To demonstrate this point, Maxima code has been given that 

includes two functions F(phi,k) and E(phi,k) that evaluate elliptic integrals of the first and 

second kind respectively.  These functions should be easily translated into other computer 

languages. 

This paper also gives two examples of how F(phi,k) and E(phi,k) could be used in place of 

‘conventional’ geodetic formulae.  These formulae are in fact truncated power series arising 

from alternative methods of evaluating elliptic integrals.  They were appropriate when 

they were originally developed (early 19th century) but in this age of the computer they 

could be viewed as an inferior method.   

Recently, papers and reports by C.F.F. Karney (2011a, 2011b and 2013) have provided 

algorithms for computing geodesics and transverse Mercator projection coordinates to 

nanometre precision.  These algorithms can be regarded as the current ‘gold standard’.  

Karney’s work and the GeographicLib software library, provide alternative formulations in 

terms of elliptic integrals that are often regarded as ‘exact’ solutions and a means of 

                                      
6 The reduced length was introduced by Gauss (1902) and was also the subject of a study by the German 

mathematician Christoffel (1829–1900) who coined the term (Karney 2013). 
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comparing the accuracy of algorithms.  Perhaps in the future, more geodetic software will 

incorporate these numerical routines. 
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